Durable anti-tumor effect induced by a long-acting and ‘Beta-intensified’ IL-2 mutein, HM16390, in various immunological conditions

Jinyoung Kim1, Jaehyuk Choi1, Yu Yong Kim1, Seongju Jeong1, Sang Hyun Park1, Sungmin Bae1, Daejin Kim1, In Young Choi1
1Hanmi Pharm. Co., Ltd, Seoul, South Korea

INTRODUCTION

• While recombinant human IL-2 (rhIL-2) was approved for metastatic renal cell carcinoma and melanoma, its suboptimal binding affinities to IL-2 receptor subunits require high-dose treatment, leading to dose-limiting toxicities, such as vascular leak syndrome (VLS) and cytokine release syndrome (CRS).
• To overcome these unwanted toxicities, next-generation IL-2 analogs were developed through blocking the IL-2 receptor alpha (CD25). In some cases, however, a binding affinity to IL-2 receptor beta (CD122) involved in immune activation was also decreased.
• Since IL-2 analog with increased CD122 binding affinity and absence of CD25 binding exhibited not only potent anti-tumor effect, but also dose-limiting toxicities, we focused more on optimal effectiveness by tuning the affinity balance between CD122 and CD25.
• Here, we developed HM16390, a long-acting IL-2 analog with enhanced CD122 binding affinity to elicit a potent anti-tumor efficacy. Additionally, instead of eliminating CD25 binding, optimal binding affinity to CD25 was explored and incorporated to prevent unwanted toxicities.
• The aim of this study was to demonstrate the novel development strategy of HM16390 and to evaluate its potent anti-tumor activity in various tumor syngeneic mouse models.

Figure 1. Structural features LAPILIL-2 analogs

Figure 2. Development strategy of LAPILIL-2 analogs

Figure 3. Safety and efficacy LAPILIL-2 analogs in normal mice

RESULTS

Study #1, Safety and efficacy of LAPILIL-2 analogs, HM16390 and HM16325 (without CD25 binding) in normal mice

• Drug moiety rationally designed for intensive anti-tumor effect with immune balance
 - Increased CD122 binding elicits outstanding lymphocyte expansion
 - Optimal CD25 binding minimizes a risk of VLS and buffers an intensified CD122 binding-derived CRS
 - Extended half-life allows once per-chemo-cycle
 - Convenient s.c. treatment option for patient adherence

CONCLUSION

• HM16390 was designed with “Beta-intensified” and “Alpha-optimized” molecular features, and given a long-acting property to cover once-per-cycle s.c. injection.
• Due to the optimal CD25 binding, HM16390 was more tolerable to systemic toxicity caused by uncontrolled excessive immune response in normal mice. In the B16F10 mice, which is a poorly immunogenic tumor model, HM16390 exhibited a superior survival rate compared to HM16325 (absence of CD25 binding) at tolerable dose.
• In the CT26 mice, which is highly immunogenic, HM16390 not only completely inhibited tumor growth but also effectively prevented the growth of re-challenged tumor cells through a memory response, demonstrating its potential to prevent tumor relapse.

Data regarding the immune response induced by HM16390 within the TME and its synergistic effect with anti-PD-1 are available in the poster presentation (abstract number #1046, Jaehyuk Choi et al.).

#1052

Hanmi Pharm Co., Ltd.

This research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (RO-2022-20165579, Republic of Korea).