A Long-acting and CD122-enhanced IL-2 analog, HM16390, synergizes with immune checkpoint inhibitor by remodeling an immune cell profile in tumor microenvironment

JaeHyuk Choi, Jinyoung Kim, Seongju Jeong, Yu Yon Kim, Sungmin Bae, Daejin Kim, In Young Choi

Hannmi Pharmaceutical Co., Ltd., Seoul, Korea, Republic of

Abstract #1831

Introduction

Immune checkpoint inhibitors (ICPIs) are widely used in cancer immunotherapy. However, the response to ICPIs depends on the phenotype of the tumor microenvironment (TME)\(^1\). Cold tumors, also known as immune-excluded or desert tumors, have shown a poor response to ICPIs due to the absence of effector T cells in the TME\(^2\). IL-2, which is an immune stimulator able to expand cancer-fighting cells in the TME, may be a promising therapeutic partner to overcome a limitation of ICPIs\(^2\).

Here, we investigated the immune cells composition in TME following HM16390 treatment and synergistic anti-tumor activity after combination with anti-PD1 in poorly immunogenic tumor syngeneic mice model.

Method & Result

TME modulation in a poorly immunogenic tumor model

Figure 1. Experimental design for evaluating immune cell phenotyping in tumor.

- **HM16390** expands tumor-infiltrating cytotoxic lymphocytes, switching **cold tumor** to **hot tumor** that are more responsive to CPI.

- **Cold tumor**
 - (Poor immunogenic)
 - Tumor cell with CTLs

- **Hot tumor**
 - (Highly Immunogenic)
 - Tumor cell with CTLs

Figure 2. HM16390 induced favorable tumor immune microenvironment in B16F10 melanoma mice.

(a) CD8+ T cell population in TILs
(b) Treg population in TILs

- A single subcutaneous administration of HM16390 increased the frequency of tumor infiltrating CD8+ T cells in dose-dependent manner (A). Furthermore, regulatory T cells were downregulated in TILs (B).

- A significant increase in the CD8+ T cell / Treg ratio in TME (C) represents favorable tumor immune microenvironment modulation, leading to significantly decreased tumor growth in a poorly immunogenic B16F10 melanoma mouse model (D).

- CD8+ T cells stimulated by HM16390 significantly expressed intracellular effector molecules, including GrzB and granzyme B compared to the aldesleukin treated group (E). TIL: tumor-infiltrating lymphocytes, i.p: intraperitoneal, QD: once daily, s.c: subcutaneous

Figure 3. Experimental design for evaluating the synergistic effect with anti-PD1.

- With anti-PD1 in poorly immunogenic tumor syngeneic mice model.

- Tumor volume was assessed three times per week by a digital caliper and survival was monitored up to study day 49.

Figure 4. Tumor growth during the respective therapies in B16F10 mice.

- HM16390, a long-acting IL-2 analog, showed a tremendous synergy in tumor growth inhibition after combination with an anti-PD1 antibody within the tolerable dose range.

- This research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, and Energy, and Ministry of Health and Welfare (NID11071, Republic of Korea)

Synergy with CPI in a poorly immunogenic tumor model

Table 1. Comparison of anti-tumor activity at the end of study (Day 49)

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Vehicle</th>
<th>Anti-mPD1</th>
<th>Aldesleukin</th>
<th>HM16390</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR rate (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>TGI (%)</td>
<td>47.8</td>
<td>69.3</td>
<td>78.2</td>
<td>104.1</td>
</tr>
<tr>
<td>mOS (day)</td>
<td>10</td>
<td>22.5</td>
<td>34.5</td>
<td>40</td>
</tr>
</tbody>
</table>

- Since 49 days after drug treatment, complete response was observed in 97% (n=7/8) of animals treated with a combination of HM16390 and anti-PD1. On the other hand, none of the animals survived in the group of aldesleukin and anti-PD1 combination.

- HM16390 effectively inhibited tumor growth and prolonged survival by synergistic action with anti-PD1 therapy. TGI (tumor growth inhibition) was calculated on day 10 after treatment, when the vehicle group had all survived. mOS: mean overall survival

Concluding Remarks

- **HM16390**, a long-acting IL-2 analog, markedly inhibited tumor growth and significantly prolonged overall survival by effectively infiltrating and activating the cytotoxic immune cells into the tumor microenvironment. Moreover, this immune profile remodeling and effects on T cell expansion/activation provides the immune-checkpoint inhibitor to be in sufficiently responsive environments.

References